Roll No. \square Total No. of Pages: 02
Total No. of Questions : 08

B.Tech. (Artificial Intelligence \& Machine Learning / Artificial Intelligence (AI) and Data Science / Automobile Engineering / Civil Engineering / Data Science / Electrical \& Electronics Engineering / Electrical Engineering / ECE / IT / Mechanical Engineering)
 B.Tech. (CSE) / (CSE) (Artificial Intelligence \& Machine Learning / IOT / Internet of Things and Cyber Security including Block Chain Technology) (Sem.-1) ENGINEERING GRAPHICS \& DESIGN

 Subject Code : BTME-101-21

 Subject Code : BTME-101-21

 M.Code : 91335

 M.Code : 91335

 Date of Examination : 12-02-22

 Date of Examination : 12-02-22}

Time : 2 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. Attempt any FIVE question(s), each question carries $\mathbf{1 2}$ marks.
2. Draw a scale of $1: 50$ or of R.F $1 / 50$ to read meters and decimeters and long enough to measure up to 6 m . Show 5.7 m and 4 m 5 dm on the scale.
3. Line "AB" 65 mm long; has its end "A" both in HP and VP. It is inclined at 45° to the "HP" and 30° to the "VP". Draw its projections when the line is lying in third quadrant.
4. A regular hexagonal thin plate of 45 mm side has a central circular hole of 45 mm diameter at its center. It is resting on one of its corners in HP. Draw its projections when the plate surface is vertical and inclined to VP at 30°.
5. A right regular triangular prism of base edge 40 mm , axis 65 mm long is resting on its rectangular face on HP, with axis parallel to both HP and VP. Draw its projections.
6. A right regular hexagonal prism, edge of base 20 mm , and height 50 mm has a central circular hole of diameter 20 mm drilled centrally through it, along its axis. Draw its isometric view.
7. Explain with the help of an example the Aligned and Unidirectional system of placement of dimensions.
8. A circular lamina of diameter 49 mm is inclined to VP at 42° and perpendicular to HP and it is resting on VP on a point of its circumference. Draw its projections. Also show traces.
9. Point C is 43 mm below HP and 55 mm behind VP. Draw its projections and find its shortest distance from XY line.

Note: Any student found attempting answer sheet from any other person(s), using incriminating material or involved in any wrong activity reported by evaluator shall be treated under UMC provisions.
Student found sharing the question paper(s)/answer sheet on digital media or with any other person or any organization/institution shall also be treated under UMC.
Any student found making any change/addition/modification in contents of scanned copy of answer sheet and original answer sheet, shall be covered under UMC provisions.

Date of Examination $\rightarrow 12$ - Feb - 2022
Roll no $\rightarrow \frac{2101892}{\text { Subject name } \rightarrow \text { Engineering Graphics \& Design }} \quad$ M. lode \rightarrow
Subject code \rightarrow BTME 101-21 Semester $\rightarrow 1^{\text {st }}$
Course \rightarrow B. Tech Branch \rightarrow USE
Decoration of Student
$1 \rightarrow J$ \qquad Volit so Sacral hereby decare that the while attempting my answer sheet will not use any persons), incriminating material or involve in any wrong activity. If such reported by evaluator, then my case should be treated as UMC.
$2 \rightarrow$ If I found sharing the question paper /s) / Answer sheet on digital mole media or with any other person, any organization linstitute then my case should be troated as UMC.
$3 \rightarrow$ If any change/ addition / modification have been found in my original answer sheet from scanned loppy of answer sheet then my original answer sheet should also be covered under UMC.
edit
sig nature of Student
I hereby also declare that above mentioned is true and correct to the best of my knowledge.

Wait Sig nature of Student

QQ

$$
\begin{aligned}
\text { R.F. }=\frac{1}{50} \quad \text { Length of Stale }[L O S] & =R \cdot F \cdot \times \text {-max } \cdot \text { length } \\
& =\frac{1}{50} \times 6 \times 100 \\
& =12 \mathrm{~cm}
\end{aligned}
$$

page no. $\rightarrow 217$

Q2

Steps \rightarrow i) Draw a base line ie. $x y$. True length is given as 65 mm . So, draw a line $a b_{1}$ at 30° to the $x y$ of 65 mm .
ii) Draw $a^{\prime} b_{3}^{\prime}$ at 45° to $x y$ of 65 mm (downward side).
iii) Extend the end of $a b_{1}$ and $a_{2}{ }^{\prime} b_{2}^{\prime}$ 'to the $X Y$ line, we get the points b_{1}^{\prime} and b_{2} respectively.
iv) Using the compass draw an are from b_{2} to locus of B. Similarly, on the bi
v) Join $a b$ and $a b^{\prime}$

Q3 \rightarrow

$$
=
$$

Steps of construction \rightarrow
i) Draw elevation $a^{\prime} b^{\prime} c^{\prime} d^{\prime} e^{\prime} f^{\prime}$ keeping one winner in HP ie. e' on the Ky line.
ii) Draw a hole of $\$ 45 \mathrm{~mm}$, in the centre of the hexagon in the deration. Divide the circle into 12 equal parts and number the division points as shown.
iii) Draw the corresponding plan for the plate along with the hole and name of all the corner points on the hexagon and the circle
iv) Thendraw the plan in the new position so that it is inclined at 30° to the $x y$ line.
v) Then draw vertical projectors through points on the plan and horizontal projectors through the points on the previous elevation, as shown in the diagram made. The points of intersection of the corresponding vertical and horizontal projectors borate points on the final elevation

Qi
Aligned system of placement of dimensions \rightarrow

- In this bype of dimensioning system, Dimensions are placed above the dimension lines which care drawn without any breate and written with parallel to them.
That may be read from the bottom cor any other side of the drawing sheet. Dimensions are placed in the middle and top of the dimensioning line.
Unidirectional System or placement of dimensions \rightarrow

\rightarrow Unidirectionalsystem of dimensioning
- In thistype of dimensioning system, dimensions are placed in such a way that they can be read from the bottom edge of drawing sheet Dimensions are inserted by breaking the dimension line at the middle

QB

Shortest distance $\longrightarrow O C^{\prime}=\sqrt{(O A)^{2}+(A C)^{2}}$

$$
\begin{aligned}
O C^{\prime \prime} & =\sqrt{(43)^{3}+(55)^{2}} \\
\Rightarrow O C^{\prime \prime} & =69.8 \mathrm{~mm} \\
\Rightarrow O C^{\prime \prime} & =70 \mathrm{~mm} \text { approx }
\end{aligned}
$$

Tsumetric View

